Numerically stable fluid-structure interactions between compressible flow and solid structures

نویسندگان

  • Jon Gretarsson
  • Nipun Kwatra
  • Ronald Fedkiw
چکیده

We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time t using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluidstructure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Investigation of Tubular PEM Fuel Cell Performance Assuming Fluid- Solid- Heat Interaction

According to the declining trend of fossil fuel resources and the need to use renewable energies, appropriate research should be conducted for technical and functional studies in this regard. Therefore, in this research, a tubular PEM fuel  cell as a suitable energy source with three-dimensional geometry has been numerically simulated and investigated. For a comprehensive study, the equations o...

متن کامل

A Two - Dimensional Fluid - Structure Coupling Algorithm for the Interaction of High - Speed Flows with Open Shells

The design of future light aerospace structures will require numerical tools to accurately describe the strongly coupled dynamics of the interactions between a light structure and a flow surrounding it. Specific examples include inflatable structures and parachutes used as deceleration devices during planet entry. In this work, an algorithm for simulating the solid-fluid interactions of a highl...

متن کامل

A conservative Embedded Boundary method for an inviscid compressible flow coupled with a fragmenting structure

We present an Embedded Boundary method for the interaction between an inviscid compressible flow and a fragmenting structure. The fluid is discretized using a Finite Volume method combining LaxFriedrichs fluxes near the opening fractures, where the density and pressure can be very low, with highorder monotonicity-preserving fluxes elsewhere. The fragmenting structure is discretized using a Disc...

متن کامل

An algorithm for modelling the interaction of a flexible rod with a two-dimensional high-speed flow

We present an algorithm for modelling coupled dynamic interactions of a very thin flexible structure immersed in a high-speed flow. The modelling approach is based on combining an Eulerian finite volume formulation for the fluid flow and a Lagrangian large-deformation formulation for the dynamic response of the structure. The coupling between the fluid and the solid response is achieved via an ...

متن کامل

An algorithm for modeling the interaction of a flexible rod with a two-dimensional high-speed flow

We present an algorithm for modeling coupled dynamic interactions between very thin flexible structures immersed in a high-speed flow. The modeling approach is based on combining an Eulerian finite volume formulation for the fluid flow and a Lagrangian large-deformation formulation for the dynamic response of the structure. The coupling between the fluid and the solid response is achieved via a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011